ScanNeRF

a Scalable Benchmark for Neural Radiance Fields


Read More
ScanNeRF | PAPER ScanNeRF

PAPER

ScanNeRF: a Scalable Benchmark for Neural Radiance Fields

Luca De Luigi*, Damiano Bolognini*, Federico Domeniconi*, Daniele De Gregorio, Matteo Poggi, Luigi Di Stefano
Eyecan.ai * Equal contribution

In this paper, we propose the first-ever real benchmark thought for evaluating Neural Radiance Fields (NeRFs) and, in general, Neural Rendering (NR) frameworks. We design and implement an effective pipeline for scanning real objects in quantity and effortlessly. Our scan station is built with less than 500$ hardware budget and can collect roughly 4000 images of a scanned object in just 5 minutes. Such a platform is used to build ScanNeRF, a dataset characterized by several train/val/test splits aimed at benchmarking the performance of modern NeRF methods under different conditions. Accordingly, we evaluate three cutting-edge NeRF variants on it to highlight their strengths and weaknesses. The dataset is available on our project page, together with an online benchmark to foster the development of better and better NeRFs.


Cite Us

If you use this dataset in your research, please cite the following paper:

@inproceedings{deluigi2023scannerf,
  title={ScanNeRF: a Scalable Benchmark for Neural Radiance Fields},
  author={De Luigi, Luca and Bolognini, Damiano and Domeniconi, Federico and De Gregorio, Daniele and Poggi, Matteo and Di Stefano, Luigi},
  booktitle={Winter Conference on Applications of Computer Vision},
  note={WACV},
  year={2023}
}

THE DATASET


OBJECTS

     
ariplane 1ariplane 2brontosaurusbulldozer 1bulldozer 2
Alt textAlt textAlt textAlt textAlt text
cheetahdump truck 1dump truck 2elephantexcavator
Alt textAlt textAlt textAlt textAlt text
forkliftgiraffehelicopter 1helicopter 2lego
Alt textAlt textAlt textAlt textAlt text
lionplant 2plant 2plant3plant 4
Alt textAlt textAlt textAlt textAlt text
plant 5plant 6plant 7plant 8plant 9
Alt textAlt textAlt textAlt textAlt text
roadrollersharkspinosaurusstegosaurustiger
Alt textAlt textAlt textAlt textAlt text
tractortrextriceratopstruckzebra
Alt textAlt textAlt textAlt textAlt text


TRAINING SPLITS

    
Train 1000Train 500Train 250Train 100
Alt textAlt textAlt textAlt text
Train sub-split 0Train sub-split 1Train sub-split 2Train sub-split 3
Alt textAlt textAlt textAlt text
Train sub-split 4Train sub-split 5Train sub-split 6Train sub-split 7
Alt textAlt textAlt textAlt text


LEADERBOARDS

EVENLY DISTRIBUTED SPLITS

 
 
average
airplane1
airplane2
brontosaurus
bulldozer1
bulldozer2
cheetah
dumptruck1
dumptruck2
elephant
excavator
forklift
giraffe
helicopter1
helicopter2
lego
lion
plant1
plant2
plant3
plant4
plant5
plant6
plant7
plant8
plant9
roadroller
shark
spinosaurus
stegosaurus
tiger
tractor
trex
triceratops
truck
zebra
DVGO*Train 100038.5238.9039.8241.5635.8439.1637.8637.9341.3438.6240.8737.9536.6739.7738.0534.5239.1640.3142.1933.6338.0839.1036.7637.1539.0440.0539.9639.9540.8639.0737.6734.0237.9741.5637.7035.06
Train 50038.4838.9739.8541.4635.9538.9637.8737.9341.0138.6540.6537.7136.7239.7338.1134.5839.1640.3442.1833.5837.9739.0636.8437.1639.0440.0739.6239.8840.8839.2537.2634.1038.1141.5237.6835.10
Train 25037.9838.4139.4640.7635.7037.9637.6437.4440.0038.2539.8236.6336.4539.2937.6634.3338.7339.7241.4233.1137.7138.4836.4636.6438.4639.3638.8439.2540.4438.8237.3633.8737.7440.9737.3034.84
Train 10036.1136.6937.6038.6234.0536.1236.0935.6338.0136.4237.8334.5934.7837.5635.9732.7836.8937.4439.3530.4735.8636.2834.5134.8536.3637.4236.6137.0038.7137.3735.4632.4235.7039.1935.6733.63
PlenoxelsTrain 100033.4234.5935.2134.7432.0534.2133.3533.9035.4532.1135.2332.9932.3835.5233.6830.4233.5034.4136.6129.3332.9434.3030.8731.8733.4733.7934.6632.8834.9633.8932.8730.5532.9935.8933.6730.32
Train 50030.3033.4933.6930.1829.7834.3332.4732.4134.1625.1035.3333.0931.2533.3532.3026.3226.4128.2934.0724.1729.1528.0225.3026.5528.1327.4434.5925.3132.7329.3230.2028.6729.1232.5032.8030.32
Train 25025.6827.4427.2124.6723.6832.4529.5427.1430.2021.0433.7432.1326.6127.5526.9622.1522.2022.7227.3820.4925.5124.0121.1220.6222.0622.0333.4619.9825.8125.2224.6523.3422.4625.9127.5329.71
Train 10021.7422.8123.3620.4319.3426.4023.4922.0125.5718.0626.9025.8721.9722.8121.6719.4419.3319.9923.0118.4622.1520.7919.1318.9819.9319.5727.2817.7821.7422.4720.4419.3218.8822.6922.4426.39
Instant-NGPTrain 100036.9937.1437.8639.9534.9938.1235.6836.6139.9636.4938.6537.8234.4237.7136.4633.9238.2137.2138.8633.8136.4338.1134.2535.5736.6837.5239.1838.3339.3138.6036.4133.5137.8239.3136.3633.49
Train 50036.9936.4038.3839.9934.7237.6535.2436.7839.4436.2139.5938.2234.5436.8436.9333.7938.2437.2338.9834.0836.5536.6435.1935.4336.7437.3939.6638.4439.0937.9636.3833.8837.9140.0436.6433.32
Train 25036.4837.5737.6139.9334.9038.3021.8236.6038.8234.6538.4837.6834.6537.5736.6933.8837.4737.4238.3834.2136.9737.1835.1535.5036.6137.4438.9438.1539.3238.3636.3933.3137.4939.7436.6633.12
Train 10036.5437.3037.4439.9634.7238.0935.5936.6539.9336.0139.7737.8034.2636.9836.4333.7934.9137.0327.5333.1836.7937.9935.0535.3636.3437.5139.3738.2839.2138.5235.9533.7338.0339.8036.5033.12

DENSELY LOCALIZED SUB-SPLITS

DVGO*

Test Split
Train split01234567
039.0736.5436.4535.8136.5135.7636.6735.97
137.1438.3636.0335.4936.0435.5736.2835.57
236.7436.0138.9136.3736.2235.6436.8636.00
336.3335.7536.9138.2635.8735.3136.4135.74
436.7735.9536.1535.6538.7836.3436.8336.07
536.2635.6835.7235.2336.9838.0936.4635.83
636.5835.9636.4235.7236.5735.8539.2036.58
736.2235.6136.0435.5636.1535.5637.2638.43


Plenoxels

Test Split
Train split01234567
031.0524.7424.6822.3724.9122.5524.4622.27
127.9730.1024.6223.1524.8523.6024.3322.45
225.1022.6231.3725.0124.0221.8625.4722.67
324.8123.3228.0930.1723.5021.7224.8523.30
425.1622.5624.0922.0031.1725.2225.4722.84
524.8323.1723.6622.0628.1830.3025.1623.87
624.2022.1524.9622.6424.7922.3531.3625.06
723.9022.3124.7323.4524.7223.2128.0230.10


Instant-NGP

Test Split
Train split01234567
036.9836.1036.4336.0436.3435.7536.3135.92
136.2336.9936.1936.2436.1435.9336.0735.95
236.5436.3137.4036.6436.5436.1736.6136.29
336.1736.1836.5337.2636.1935.9436.2336.21
436.3936.0036.4836.1237.1236.1036.4636.09
536.0736.1436.2036.1636.4536.9436.2136.21
636.4336.2536.6336.4236.5836.1537.2836.48
736.1736.1136.3936.3636.3136.1536.5037.20



* DVGO has been trained and tested with half resolution images due to memory constraints.


Submit Your Results

Send us your results on the private test set so we can add your method to our leaderboard!

To do so, send an e-mail to info@eyecan.ai with subject “Scannerf results submission” and the following info:

  • The name/s of your method/s.
  • A description of your method/s.
  • A download link with your results for every proposed method, with rendered images for every test set sample. We will compute metrics on those images.

Feel free to ask us any questions!

Luca De Luigi

Luca De Luigi

luca.deluigi4@unibo.it

Damiano Bolognini

Damiano Bolognini

damiano.bolognini@eyecan.ai

Federico Domeniconi

Federico Domeniconi

federico.domeniconi@eyecan.ai

Daniele De Gregorio

Daniele De Gregorio

daniele.degregorio@eyecan.ai

Matteo Poggi

Matteo Poggi

m.poggi@unibo.it

Luigi Di Stefano

Luigi Di Stefano

luigi.distefano@unibo.it


You Can find us here